A Migration Age Anglo-Saxon Leper

Paleomicrobiology and isotopic analysis has the ability to completely change what we know of past infectious diseases. A study published this month on a fifth century Anglo-Saxon skeleton is one of the most complete I have read.

Lesions on skeletons found at Great Chesterfield in Essex, England, suggested possible leprosy. To confirm this diagnosis, they chose one skeleton that is nearly complete and in good shape for further analysis.

Grave GC86 from Great Chesterford, excavated in a rescue archaeology operation in 1953-4.
Grave GC86 from Great Chesterford, excavated in a rescue archaeology operation in 1953-4. (Inskip et al, 2015)

The skeleton (GC96) shown to the right is of a 25 to 35-year-old male buried in modestly furnished grave in an area of the cemetery with other visibly disabled people. Radiocarbon dating places these remains at AD 415-545, and thus Migration Age for the Anglo-Saxons. The Great Chesterford cemetery is located roughly in an approximate border area between the kingdom of the East Saxons and East Angles at the site of a ford of the River Cam (or Granta) downriver from Cambridge. He was buried with a slender knife secured by a belt with an oval buckle. Over his left shoulder, a spear and a conical ferrule were found.  Lesions consistent with lepromatous leprosy were found on the lower legs with extensive remodeling of the right foot. A bronze shoelace tag found near the right foot suggests the diseased foot covered with a shoe.  Given the lesions found on the foot and lower legs, the ferrule may have capped a walking staff. His facial bones were missing losing a common, distinctive site of leprosy lesions. The disorganized and rough appearance of new bone growth suggest that the lesion was active at the time of death.

Profile of the mycolic acids extracted from the indicated bones.
Profile of the mycolic acids extracted from the indicated bones. (Inskip et al, 2015)

Selections of bone were taken and powdered to extract aDNA and for lipid analysis. Mycobacterium species that cause leprosy and tuberculosis have distinctive lipid profiles that have been successfully extracted and identified by archaeological remains in the past. Their analysis of lipids from the bones confirmed the presence of Mycobacterium leprae and excluded the presence of Mycobacterium tuberculosis.  The aDNA analysis confirmed identified the presence of Mycobacterium leprae strain 3I-1, that has been previously found in later medieval England, Denmark and Sweden. Inskip et al (2015) suggest a possible Scandinavian origin for the strain.  The VNTR analysis used to produce ‘genetic fingerprints’ shows that this strain of M. leprae is unique among other ancient isolates and should be useful in the comparative analysis of other early remains. Other remains in the same cemetery have similar lesions and will be investigated in the future.

Isotopic analysis of his tooth enamel provide an indication of childhood location and adult nutrition. Carbon analysis showed a diet of primarily C3 plants, consistent with southern Britain. Analysis of oxygen and strontium isotopes suggest he did not spend his childhood in the area of Great Chesterford.

The combination of the two isotopes gives his best probable origin to be between north-central France and the north-central Germany, in other words, the region of the Anglo-Saxon homeland. A continental origin coupled with the dating range between 415 and 545 suggests that he was part of the migration of the peoples who later called themselves Anglo-Saxons. He was likely no more Scandinavian than any of the other migration era ‘English’. This is further supported by a relatively high level of leprosy (by osteological analysis) in medieval city of Schleswig, the very area where the Angles are most specifically located. Further analysis of migration era remains should refine the origins of this strain of leprosy and determine its frequency.

Reference:

Inskip, S. A., Taylor, G. M., Zakrzewski, S. R., Mays, S. A., Pike, A. W. G., Llewellyn, G., et al. (2015). Osteological, Biomolecular and Geochemical Examination of an Early Anglo-Saxon Case of Lepromatous Leprosy. PLoS ONE, 10(5), e0124282. doi:10.1371/journal.pone.0124282.s001

Kristina Killgrove, 14 May 2015 “Earliest Case of Leprosy in Britain reveals Scandinavian Origins of the Disease”, Forbes.com

SIMON MAYS, SONIA R. ZAKRZEWSKI, SARAH A. INSKIP, STEPHANIE WRIGHT and JOANNA R. SOFAER. (2015) Anglo-Saxon concepts of dis/ability: placing disease at Great Chesterford in its wider context. Poster at The 84th Annual Meeting of the American Association of Physical Anthropologists.

Contours of the Black Death Cemetery at Charterhouse Square, London

Excavations for the Crossrail Extension project discovered the second major Black Death cemetery in London in 2013. This week the first peer-reviewed publication of findings from the site appeared (in press).  As a rescue excavation in the midst of a construction project, the site had to be quickly surveyed for the extent of the cemetery and this is what is contained in this publication.

This site is part of 13 acres leased by Sir Walter de Mauny from St Bartholomew’s Priory for an emergency cemetery for plague victims in 1349 AD.  The site has been used for a variety of purposes over the centuries and currently is a four acre green space called Charterhouse square. The site is graphically displayed below with the locations of later structures.

Crossrails site, London
Crossrails site in Charterhouse Square, London (Dick et al., 2015)

The initial discovery came in a shaft just to the southwest of the Charterhouse Square. There they found three layers of graves with a total of 25 bodies lacking signs of trauma and with pottery shards from 1270-1350 AD. Subsequent radiocarbon dating and aDNA analysis confirmed that they were victims of the Black Death.

The surveys conducted over just two days were able to outline the broad contours of features at the site. These included a 15th century building, a priory kitchen, a probable World War II submerged emergency water tank, and a possible ditch and bank along the cemetery that is mentioned in descriptions. They believe that a disturbed area in the southwest corner represents about 200 individual graves, although only excavation can confirm these graves. They concluded that their ability to detect medieval objects in such an intensely used urban area suggests these methods are a good option for similar future situations.

The scans also revealed some surprises. There are not as many graves as descriptions suggest should have been there, though bodies may be more dense that suggested by the scans. They also did not find any large pits of  stacked bodies. This indicates that even during the height of the Black Death, many people were still buried in individual graves. Graves were found in three phases with layers of clay-rich earth in between perhaps in an attempt to seal the graves. These scans should allow them to target future excavations to areas with a high probability of dense graves.

Reference:

Dick, H. C., Pringle, J. K., Sloane, B., Carver, J., Haffenden, A., Stephen Porter, H. A., et al. (2015). Detection and characterisation of Black Death burials by multi-proxy geophysical methods. Journal of Archaeological Science, 1–50. doi:10.1016/j.jas.2015.04.010 [In press, accepted manuscript]

An Anniversary year for Natural Disasters: 1815, 1665, and 1315

There are major natural disasters every year. In the last year alone we have had the major earthquake in Nepal just in the last couple days and a historic epidemic of Ebola. It’s too soon to tell how these latest disasters will seen by history and effect historical interpretations. This year there are three natural disaster anniversaries that stand out from the rest not just due to their mortality but also because of their impact on how we interpret the past.

Tambora, 1815

Mount Tambora Volcano, Sumbawa Island, Indonesia
Mount Tambora Volcano, NASA image (public domain)
Just a few weeks ago there was a minor splash in the news to mark the 200th anniversary of the eruption of Tambora on April 5, 1815. The photo to the right is the caldera of Tambora taken from space. As tragic as the thousands of deaths directly related to the eruption are, 1815 is best known as the ‘year without a summer’, a volcanic winter. It is impossible to know how many deaths resulted from crop failures and unseasonable weather. As the most recent volcanic winter, 1815 is an important because we have the most reliable scientific data, economic data, and descriptions of the effects on health and culture from people in all walks of life all over the globe. I don’t know as much about Tambora and its after effects as I would like, so I’m planning on reading The Year Without a Summer by historian William Klingman and meteorologist Nicholas Klingman (2013). If I like it, maybe you will hear more about it later this year.


Great Plague of London, 1665

This year is also the 350th anniversary of the Great London Plague that was followed closely by the Great London fire. Despite its reputation, the great plague of London was not the last major plague of Europe by a long shot.

17th century London
17th century London

The 1665 plague of London claimed up to 100,000 lives, about as many as died in the Marseille plague of 1720-3. Fifty years later, a similar size plague struck Moscow under Empress Catherine the Great. Yet, the London Plague is the one that gets the most attention.

A great deal of the notoriety of the Great Plague of London comes from the amount and quality of resources available in English.  Daniel Dafoe immortalized the plague in his novel, Journal of a Plague Year written in 1722. A savvy author, Dafoe timed it to take advantage of plague fears in southern Europe, concurrent with the plague in Marseille. It is testament to the Dafoe’s skill as a writer than his novel is often taken as historical evidence. I think I’ll mark the anniversary by reading Defoe’s classic.

The London plague has also been magnified by it linkage with the great fire of London in 1666. The relationship between the fire and the plague has been controversial. It has been sometimes assumed that the fire ended the plague, but the plague was winding down before the fire began. However, it is likely that the fire removed the environment that had supported the plague preventing its return; over 80% of the citizens of London were left homeless. Restoration of the capital city after the great fire also immortalized 1665-6 in the history of London.


Great European Famine, 1315

A less combustible but perhaps equally deadly anniversary this year is that of the Great Famine of 1315 that effected most of continental Europe. Seven hundred years ago the famine began and, while its hard to estimate famine mortality over three to seven years, perhaps up to 15% of Northern Europeans died. It began with soaking and then flooding rains that destroyed winter crops for two years with yields of wheat and rye in England and Wales 60% below normal in 1316, and again in 1321 with similar drops in yield. Also beginning in 1315 the great bovine pestilence, possibly rinderpest,  begins in Central Europe and spread across the continent: France and Germany, the Low Countries,  Denmark and England by 1319. In just one year, England and Wales lost approximately 62% of all bovines (Slavin 2012). The loss of dairy and beef was compounded by the fact that oxen provided the vast majority of traction and fertilizer. With similar losses across Europe, it took nearly 25 years to return cattle numbers to the pre-epizootic levels.

There was no respite for the 14th century. The childhood survivors of the famine and food shortage were the adults who were cut down by the Black Death in the 1340s. What effect malnutrition had on their developing immune system is a line of inquiry being explored by anthropologists Sharon DeWitte and historian Philip Slavin (2013). Let us not forget, it still got worse, between the crop failures and panzootic of 1315 and the Black Death in 1346 , the Hundred Years’ War begins in 1337.

References

Devaux, C. A. (2013). Small Oversights That Led to the Great Plague of Marseille (1720-1723) Lessons From the Past. Infection, Genetics and Evolution, 14(C), 169–185. doi:10.1016/j.meegid.2012.11.016 (for comparisons to other epidemics)

Slavin, P. (2010). The Crisis of the Fourteenth Century Reassessed: Between Ecology and Institutions — Evidence from England (1310-1350). EHA Paper, 1–14.

Slavin, P. (2012). The Great Bovine Pestilence and its economic and environmental consequences in England and Wales, 1318–501. The Economic History Review, 1–28.

Dewitte, S., & Slavin, P. (2013). Between Famine and Death: England on the Eve of the Black Death—Evidence from Paleoepidemiology and Manorial Accounts. Journal of Interdisciplinary History, 1–25.