Category Archives: mosquitoes

El Niño and Possibly New World Primates Contributed to Zika Explosion

by Michelle Ziegler

The explosion of Zika-related birth defects this past year came out of the blue. Zika has been known since the 1940s but was seen as a mild dengue-like illness (Fauci & Morens, 2016). Leaving aside how and why microcephaly has appeared so dramatically, it is undeniable that Zika’s emergence and transmission in the Americas have been unusually rapid and extensive.

Aedes aegypti from Tanzania (Source: Muhammad Mahdi Karim, 2009, GNU Free Documentation License)

Two papers published in December focusing on the Aedes mosquito vectors begin to shed light on how Zika was able to be established so quickly and pervasively. Zika utilizes the same tropical mosquito Aedes aegypti as dengue; it was once known as the yellow fever mosquito. It is also the vector of the chikungunya virus.

As first observed in West Africa many years ago, Zika epidemics followed a chikungunya epidemic by a couple years. Chikungunya was the emerging infectious disease of 2013, the year that Zika is believed to have arrived in South America (Fauci & Morens, 2016). Unrecognized by public health workers at the time, a Chikungunya epidemic was simultaneously chugging along under the radar in at least Salvador, the capital of the Bahai state of Brazil, during the peak of Zika epidemic of 2015 (Cardoso et al, 2017).

El Niño 2015-2016

In the first study by Cyril Caminade and colleagues at the University of Liverpool modeled Zika transmission in the two critical vector species in the Americas, the tropical Aedes aegypti found primarily in South America and the temperate Aedes albopictus found in the southern United States. It is thought that Zika transmits better from A. aegytpi but more research is needed to fully understand the differences. They developed a two vector, one host model where the climate is a variable to compare the effect of climate patterns on Zika transmission. They ran these simulations for each vector individually and together against historic climate data sets.

When they compared the worldwide distribution of the vectors and climate, they were able to show that all of the countries where Zika has been reported were predicted in their model. Ominously, South America was the most friendly region in the world for Zika (Caminade et al, 2016). The model for Zika produced a map that correlates extremely well with the global distribution of dengue. Due to the overlap of A. aegypti and A. albopictus territory, they found a high probability that Zika would transmit well in most of the southern United States.

Risk of Zika transmission based on their models A. winter of 2015-2016 B. Risk over the last 50 years. (Caminade et al, 2016)

The global climate anomaly known as El Niño is known to impact mosquito-transmitted diseases, so they had a particular interest in comparing the 2015-2016 El Niño to historic data sets. The map shows the predicted Ro (reproduction number) for Zika around the world in 2015-2016  and in the bar graph compared to the last 50 years. The conditions for Zika were the best for the last 50 years. Other hot spots that did not experience a Zika epidemic, like India, did have a record year for dengue. They also note that the African hot spot for ideal transmission conditions corresponds and to Angola where there was a Yellow Fever outbreak. In short, it was a very good year for Andes aegypti! And now, as of January 2017, Yellow Fever had added to their misery in a Brazil.

A Sylvatic Reservoir? 

Understanding if Zika will establish a sylvatic reservoir in South America is of vital importance for projections and mitigation of future Zika epidemics in Brazil and elsewhere in South America. Zika was initially detected in a sentinel monkey in Uganda and has since been detected in a wide variety of smaller primates in Africa and Asia. Using a model originally proposed for dengue they were able to show that primates with rapid birth rates and short lifespans are ideal for establishing sylvatic Zika. In primates with short life span, five years or less, and rapid birth rates, the establishment of a sylvatic reservoir is “nearly assured” (Althouse et al, 2016). They predict that a primate population as small as 6,000 members with 10,000 mosquitoes could support a sylvatic reservoir (Althouse et al, 2016). Ironically, since infection rate is dependent upon bites per primate, a small primate population with a large mosquito population is better at maintaining the reservoir than a large primate population. Old World monkeys like the African Green Monkey, a known African host of Zika, are already established in free-living troops in South American forests.  While A. aegypti favors human environments, A. albopictus prefers forested environments and has been spreading in Brazil.  It could be a prime candidate for a bridging vector between a sylvatic and domestic Zika cycle. Studies on Zika vulnerability and incidence in all South American primates has to be a priority. Our ability to manage Zika in the future depends on it.


Caminade, C., Turner, J., Metelmann, S., Hesson, J. C., Blagrove, M. S. C., Solomon, T., et al. (2016). Global risk model for vector-borne transmission of Zika virus reveals the role of El Niño 2015. Proceedings of the National Academy of Sciences of the United States of America, 201614303–28.

Cardoso, C. W., Kikuti, M., Prates, A. P. P. B., Paploski, I. A. D., Tauro, L. B., Silva, M. M. O., et al. (2017). Unrecognized Emergence of Chikungunya Virus during a Zika Virus Outbreak in Salvador, Brazil. PLoS Neglected Tropical Diseases, 11(1), e0005334–8.

Althouse, B. M., Vasilakis, N., Sall, A. A., Diallo, M., Weaver, S. C., & Hanley, K. A. (2016). Potential for Zika Virus to Establish a Sylvatic Transmission Cycle in the Americas. PLoS Neglected Tropical Diseases, 10(12), e0005055–11.

Fauci, A. S., & Morens, D. M. (2016). Zika virus in the Americas—yet another arbovirus threat. New England Journal of Medicine, 374(7), 601–604.

Private SNAFU learns about Malaria

Malaria was a major risk for American troops during World War II. The US Army enlisted the help of Theodor Geisil, Dr Seuss, to produce educational booklets and pamphlets (discussed here). They also turned to moving pictures to educate the troops.  Private Snafu was featured in a catalog of 26 SNAFU training films based on characters originally developed by Theodore Geisil and Phil Eastman and produced by Warner Bros. If these World War II cartoons has a familiar look, they were produced by Chuck Jones who produced most of the Looney Tunes and Merrie Melodies cartoons we all grew up with. These are the only two on malaria that I have found. Enjoy!

Private SNAFU vs Malaria Mike (1944)

Private SNAFU — Its Murder She Says (1945)

Human Parasites of the Roman Empire

Last week photos of Roman toilets were splashed across the web breaking the news that the Romans were not a healthy as most people seem to have assumed. As with many public health interventions, the real value of a sanitation system is out of view (and out of mind) to most people. Its not the toilet that keeps us healthy; its the water treatment plant. Plumbing just moves waste with its microbes and parasites from one place to another.

Paleoparasitology specialist Piers Mitchell put the Roman public health system to the test by evaluating the evidence for human parasites in archaeological remains from before, during and after the Roman Empire. Comparisons before and after the empire are more difficult in North Africa and the Middle East because these areas had long standing sophisticated civilizations before the Roman empire. There is more clarity between civilizations in Europe since Celtic and Germanic societies did not have anything like Roman infrastructure. Contrary to his expectations, there were just as many parasites and ectoparasites in the Roman era as before or after.  In some cases the empire helped spread parasites across Europe. Relative amounts of parasites across times is difficult to ascertain for a huge variety of reasons. So while the same parasites were present, the degree of infestation would have varied by place and time period, and archaeology can’t reliably predict this.

The Roman achilles’ heel was their use of human waste for fertilizer and fecal contamination of rivers.  Human waste was added to the other manure and redistributed to farm fields and the watershed. What they could not have understood is that human waste is a greater risk for the transmission of human parasites and bacterial diseases. Mitchell also suggests that Roman bath water, that was rarely changed, could have transmitted worm eggs and other parasites. Aquaducts did bring in cleaner water to some of the larger cities but the system could be contaminated and not all Roman sites had access to water from aquaducts. Walter Scheidel (2015:8) has claimed that the city of Rome itself was an example of the”urban graveyard” effect with a very unhealthy population despite having a “heavily subsidized food and water supply”. Scheidel emphasizes the impact of malaria and gastrointestinal disease. We should also keep in mind that a large proportion of gastrointestinal disease would have been bacterial or viral.

Second century Roman mosaic of foodstuffs

As the mosaic to the left shows, the Romans did change agriculture throughout the empire. They spread Mediterranean preferences for cereals and more fish and other aquatic food sources. Mitchell suggests that the Roman love for fish products, especially the fermented fish sauce garum, probably help spread fish tapeworms found throughout the empire. Many parasites and bacterial spores have evolved to withstand preserving methods like smoking, pickling, and osmotic preservation (like salting or sugaring).  Whipworm was the most common parasite found, but round worms and tape worms were also common. Lancet liver flukes were widespread and indicate the (presumably accidental) consumption of ants.  Antibody based detection (ELISA) has been able to identify Entamoeba histolytica that causes the usually endemic amoebic dysentery (as opposed to the epidemic bacterial dysentery caused by Shigella species). Although not strictly speaking parasites, Mitchell notes an abundance of evidence for flies around cesspits suggesting that they contributed to the spread of diseases associated with fecal contamination. He also notes that schistosomiasis has not been identified in Roman Europe, even though it has been found in medieval European remains.

Turning to ectoparasites, Mitchell found ample evidence of head lice, body lice, public lice, human fleas and bed bugs across the Romanized world. Human fleas (pulex irritans) have been particularly well preserved in Roman, Anglo-Scandinavian and medieval York in Britain. Mitchell notes that human fleas and body lice were present in over 50 archaeological layers at York. He concludes that “the Roman habit of washing in public baths does not seem to have decreased their risk of contracting ectoparasites, compared with Viking and Medieval people who did not use public baths in the same way” (Mitchell 2016: 6). Mitchell suggests that there were enough ectoparasites to support particularly lice transmitted diseases. He notes that Plague of Justinian was transmitted by fleas but is non-committal on the likely specific vector.

In examining the impact of the Roman empire, Mitchell notes that the transition from a wide variety of zoonotic parasites to those primarily associated with human fecal contamination had already occurred before the Roman expansion out of Italy. This shift is paralleled elsewhere and is tied to shift from hunter-gathers to settled agriculture. Whipworm, roundworm and amoebic dysentery were the primary parasites of Roman Europe, while the Romans seem to have made a lesser impact on North Africa and the Middle East where endemic zones of parasites were well established.

Malaria is the one parasitic disease I would have liked to see Mitchell discuss more. Mitchell notes that malarial aDNA has been found in Egypt and anemia possibly caused by malaria in Italy. He overlooks all the malaria work by Robert Sallares including malarial aDNA from Late Roman Italy and better anemia studies correlating with malaria have been done in Italy and Britain by Rebecca Gowland’s group. Yet, malaria is such a big topic that it would be hard to cover along with all the other parasites.


Mitchell, P. D. (2016). Human parasites in the Roman World: health consequences of conquering an empire. Parasitology, 1–11.

Scheidel, W. (2015). Death and the City: Ancient Rome and Beyond. Available at SSRN 2609651.

See also:

Hall, A., & Kenward, H. (2015). Sewers, Cesspits, and middens: a survey of the evidence of 2000 years of waste disposal in York, UK. In P. D. Mitchell (Ed.), Sanitation, latrines and intestinal parasites in past populations (pp. 99–120).