Category Archives: China

Dogs as Plague Sentinels and Vectors

Marmot fighting a wild dog in northern Tibet (Source: China Tibet Online/ Xinhua)

I’ve been a little obsessed with thinking about dogs and the plague lately. Dogs are often overlooked in historic plague discussions because they usually survive plague and dog-specific fleas are not associated with transmitting plague. Yet, dogs can host many of the fleas common among rodents and others that do transmit the plague including the cat flea (Ctenocephalidis felis) and the human flea (Pulex irritans) (Gage, Montenieri, & Thomas 1994). In a case controlled study of nine US cases of bubonic and septicemic plague in 2006, having dogs in the home and particularly sleeping with a dog was a significant risk factor, probably by flea transfer (Gould et al, 2008).  There is also a growing awareness that dogs can also transmit pneumonic plague directly to humans. Like other aspects of plague biology, there is a lot going on under a veneer of normalcy.

Dogs do readily contract the plague; it’s just not apparent to casual observation. In the American state of New Mexico, 62 domestic dogs were diagnosed with plague just between the years 2003 and 2011 — 97% survived (Nichols et al, 2014).  The dogs were diagnosed by an increase of Yersinia pestis F1 antibody greater than four times greater than the recovered level, by isolation of Yersinia pestis from a body fluid or by direct flourescent antibody assay of a tissue specimen. All of them had some physical sign of infection with fever and lethargy being found in 100% of cases, but buboes or lymphadenopathy (enlarged lymph nodes) were found in only 23% and these were all in the jaw and neck region. The mean time for recovery was two days, although all but one did receive at least one dose of antibiotics. Potential sources of plague exposure are from prairie dogs, ground squirrels, chipmunks, and rabbits. Only three of the dogs had any fleas at all, but as these dogs were pets, most had received anti-flea treatment.

Monitoring plague in working dogs and other carnivores is the most efficient method of doing plague surveillance in the vast semi-arid grasslands that harbor some of the most enduring plague reservoirs. Dogs are especially useful because their immunity only lasts about six months, so a detectable level (titre) of plague antibody indicates recent contact with an infected animal. Gage, Montenieri, and Thomas (1994:6) estimated that  “sampling even a few rodent consuming carnivores, such as coyotes, can be roughly equivalent to sampling hundreds of rodents for evidence of plague infection”. The earliest serologic survey that I have found was done in Navajo lands in 1966-1968. In this same survey  in 1968, “the plague organism was isolated from a pool of fleas (Pulex irritans) taken from the household dogs of a person with plague” (Archibald & Kunitz 1971). Carnivores are now routinely monitored in the US.  Surveying herding dogs in Iran was able to show that the long unmonitored plague foci is still active (Esamaeili et al., 2013). Recent Chinese F1 antibody surveys in the Gansu province are more ominous: in 2012 4.55% of dogs were positive, but it had jumped to 10% of dogs by 2014 (Ge et al, 2014). Another  2014 survey of multiple Yersinia species in dogs found 25% of dogs in Gansu province and 18% of dogs in Qinghai province to be positive for Yersinia pestis F1 antibody, while no plague-free provinces had a single dog that had a positive antibody titre (Wang et al, 2014).

Consumption is the likely primary route of infection for dogs.  The 62 dogs from New Mexico are believed to have been primarily infected by consumption of a plague infected rodent or rabbit (Nichols et al, 2014). In a 2014 case study from China, an infected marmot was taken from a dog, butchered and divided among five dogs. All five dogs developed positive antibody titers for  plague and the shepherd who took the marmot from the dog developed pneumonic plague (but not his brother who butchered the marmot). Aerosol transmission was supported by  the isolation of Y. pestis from sputum and throat samples (Ge et al, 2014). One dog not fed the marmot was negative for the F1 antigen. Three of the 151 human contacts given prophylactic antibiotics developed an antibody titre but did not manifest disease. According to Chinese policy, the five positive dogs were euthanized and the local marmots were depopulated (Ge et al., 2014).

Dogs can transmit plague to humans through fleas that feed on the dog, fleas carried by the dog from the rodent source of the infection,  through bites or scratches, or by aerosols from dogs that develop a systemic infection. While dogs are usually thought of transmitting infected fleas to people, the  number of pneumonic cases linked to dogs is increasing. The first confirmed transmission of pneumonic plague from a dog to a person occurred in China in 2009 (Wang et al, 2015). The index case in turn transmitted pneumonic plague to eleven people. Three of these twelve cases died with the other nine cases confirmed by Y. pestis F1 antibody titres. All of the Y. pestis isolates were later typed to “biovar antiqua” — a reminder that older strains are still very virulent (Wang et al, 2009). In June 2104, in Colorado, a dog transmitted pneumonic plague to three caregivers, one of whom transmitted it to another person. All of four of these cases survived and 88 additional people were given prophylactic antibiotics (Runfola et al, 2015). Three of China’s 2014 plague cases in Gansu province within the Qinghai-Tibet plague focus area  were pneumonic plague in herders.  All three arrived at the medical center too late for effective antibiotic treatment and died (Li et al, 2016). Chinese authorities believe that two of these men may have contracted plague from infected dogs and the third directly from a marmot (Lie et al, 2016).

Dog transmitted plague seems to usually result in family or small settlement size outbreaks. I do wonder about the potential role of dogs in the Bronze Age cases of plague (Rasmussen et al, 2015). Dogs contracting plague by consumption of infected rodents and passing it on to human contacts seems possible with the tools of the Bronze Age strains. It might also be worth investigating the potential role of dogs in the beginning of the Great Manchurian Plague of 1910-1911, which focused on hunters who likely used dogs extensively. Indeed hunters in this region would feed sick marmots to their dogs believing that they could not contract the disease. Outbreaks of 100% lethal plague were not unknown among hunting families in Manchuria (Summers 2012: 122-124). Such a high mortality rate would suggest pneumonic plague.


Archibald, W. S., & Kunitz, S. J. (1971). Detection of plague by testing serums of dogs on the Navajo Reservation. HSMHA Health Reports.

Esamaeili, S., Azadmanesh, K., Naddaf, S. R., Rajerison, M., Carniel, E., & Mostafavi, E. (2013). Serologic Survey of Plague in Animals, Western Iran. Emerging Infectious Diseases, 19(9).

Gage, K. L., Montenieri, J. A., & Thomas, R. E. (1994). The role of predators in the ecology, epidemiology, and surveillance of plague in the United States, 20.Proceedings of the 16th Vertebrate. Pest Conference (W.S. Halverson& A.C. Crabb, Eds.) Published at Univ. of Calif., Davis. 1994.

Ge P, Xi J, Ding J, Jin F, Zhang H, Guo L, Zhang J, Li J, Gan Z, Wu B, Liang J, Wang X, Wang X, Primary Case of Pneumonic Plague in Marmata himalayana natural focus area Gansu Province, China, International Journal of Infectious Diseases (2014),

Gould, L. H., Pape, J., Ettestad, P., Griffith, K. S., & Mead, P. S. (2008). Dog-Associated Risk Factors for Human Plague. Zoonoses and Public Health, 55(0), 448–454.

Li, Y., Li, D, Shao, H., Li, H and Han, Y. (2016) Plague in China 2014 — All sporadic case report of pneumonic plague. BMC Infectious Disease. 16: 85.

Lin, Karen. (2014-07-02) Photo: Himalaya marmot eaten by wild dogs in N. Tibet. China Tibet Online.

Nichols, M. C., Ettestad, P. J., Vinhatton, E. S., Melman, S. D., Onischuk, L., Pierce, E. A., & Aragon, A. S. (2014). Yersinia pestis infection in dogs: 62 cases (2003-2011). Journal of the American Veterinary Medical Association, 244(10), 1176–1180. doi:10.2460/javma.244.10.1176

Rasmussen, S., Allentoft, M. E., Nielsen, K., Orlando, L., Sikora, M., Sjögren, K.-G., et al. (2015). Early Divergent Strains of Yersinia pestis in Eurasia 5,000 Years Ago. Cell, 163(3), 571–582. [Bronze Age cases]

Runfola, J. K., House, J., Miller, L., Coltron, L., Hite, D., Hawley, A., et al. (2015). Outbreak of Human Pneumonic Plague with Dog-to-Human and Possible Human-to-Human Transmission — Colorado, June–July 2014. MMWR. Morbidity and Mortality Weekly Report, 64(16), 429–434.

Salkeld, D. J., & Stapp, P. (2006). Seroprevalence Rates and Transmission of Plague (Yersinia pestis) in Mammalian Carnivores. Vector-Borne and Zoonotic Diseases, 6(3), 231–239.

Summers, William C. (2012) The Great Manchurian Plague of 1910-1911: The Geopolitics of an Epidemic Disease. Yale University Press.

Wang, H., Cui, Y., Wang, Z., Wang, X., Guo, Z., Yan, Y., et al. (2015). A Dog-Associated Primary Pneumonic Plague in Qinghai Province, China. Clinical Infectious Diseases, 52(2), 185–190. doi:10.1093/cid/ciq107

Wang, X., Liang, J., Xi, J., Yang, J., Wang, M., Tian, K., et al. (2014). Canis lupus familiaris involved in the transmission of pathogenic Yersinia spp. in China. Veterinary Microbiology, 172(1-2), 339–344. doi:10.1016/j.vetmic.2014.04.015

Microbial Forensics of a Natural Pneumonic Plague Outbreak

For bioterrorism agents like Yersinia pestis it is necessary to identify the strain and its source specifically enough for forensic use. Categorizing an epidemic isolate and tracing its source is always important for public health measures, but the level of precision is far higher for legal uses. Developing forensic techniques to characterize and parse very similar strains of a species and trace it to a specific location robs terrorists (and states) of the ability to deny responsibility for an attack (Koblentz & Tucker, 2010). The ability to launch a secret and deniable attack on an enemy has been viewed as one of attractive advantages of biological warfare.

A Chinese group led by Ruifu Yang and Yujun Cui recognized that only whole genome sequencing could adequately parse the strains of the monomorphic species Yersinia pestis but that the computing power necessary to compare entire genomic sequences as the database enlarges is impractical (Yan et al, 2014). Unlike most pathogens, typing only specific regions of the genome are just not enough to get a unique genetic fingerprint for low genetic variability pathogens like Yersinia pestis. This is yet another indication of the genomic similarity of all Yersinia pestis strains.

The Chinese group developed a two stage method of classification detailed enough for forensic work.  They took a twelve person outbreak of pneumonic plague contracted from a dog in 2009 in the Qinghai area of Tibet / western China, specifically at Xinghai as their test case (Wang et al, 2010). In the first step they took six cases including the two dogs who died in the outbreak and compared them to 24 strains representing the 23 phylogroups of the phylogenetic tree. This comparison selected which branch of the phylogenetic tree the outbreak belonged. There were no SNP (single nucleotide polymorphisms) different between the seven isolates confirming a common source, one of the dogs based on outbreak narratives. The seven isolates were all the same strain belonging to branch 1.IN2 of the tree. The second step was to then compare the isolates to all known strains of 1.IN2 shown below. Since these strains all come from the Qinghai-Tibetan plateau, they were able to add other strains historically isolated from this region.

Distribution of 1.IN in Qinghai  (site source)
Distribution of 1.IN2 in Qinghai (Yan et al, 2014, click to enlarge)

The results localized the new isolates (r) as being from the same focus as strains g, r, s, t. u plus, interestingly, the 0.PE7 strain (green b) that is over 300 SNPs different from the 1.IN2 strains. All of these other strains from this branch are scattered around the Qinghai region near Lake Qinghai. The polysomy (branch point) that produced all of the 1.IN2 in Xinghai (g,r,s,t,u) is located closer to the eastern end of Lake Qinghai, where the Chinese team hypothesizes this these strains began. The new outbreak isolates did not match any previous isolates from Xinghai which is testimony to the degree of movement of these strains around the region. Without the case narrative, they would not have been able to identify the specific foci at Xinghai, but would have got it to the region of east Qinghai lake. This illustrates how important sampling all of these foci are because a biological attack is likely to be far from its site of environmental isolation. Characterization of all laboratory strains, obviously, needs to happen as well for forensic tracing.

Reconstructing the historical epidemiology of this region will be an area of continuing research. The location of 0.PE7, the most genetically ancestral strain ever found — the closest the common ancestor of all Yersinia pestis, plus the likelihood that the ‘big bang’ epidemic (or epizootic), that produced the third pandemic, represented by node 12, was also in this region. (Each of the nodes represents a bang of evolutionary diversity, with all major branch points in the lineage probably representing large epidemics or epizootics.) The full diversity of strains in this region (unrelated to the outbreak isolates) are not shown in the figure above. This same group lead by Ruifu Yang  produced the primary phylogenetic tree of Yersinia pestis in China that noted that the molecular clock is not constant (Cui et al, 2012), here calculates that N12 is about 212 years old (95% confidence being 116 to 336 years ago) (Yan et al, 2014).  They note that in the history of Qinghai, there was a major human outbreak in the year 1754 CE linked to a Buddhist missionary working in Qinghai and Gansu provinces (Yan et al, 2014). Its is unclear if we can trust this narrative at all; scapegoats are common in plague narratives. Linking the 1.IN2 strains from Qinghai to four of the five o.IN2 isolates from Tibet suggest that the epidemic moved from Qinghai to Tibet in one ancient epidemic, though remaining isolate from Tibet looks like a more recent transmission from Qinghai. Regardless of the movements of 1.IN2, this area is believed to have been a site of long-term survival of Yersinia pestis, potentially over a thousand years, so that it has a lot to teach us about enduring foci.

Microbial forensics has already been used in criminal investigations, court cases and intelligence operations, such as the ‘Amerithrax’ (anthrax) attacks of 2001, anthrax spores sprayed over Japan by a cult, and suspicious plague cases in New York City (Yan et al, 2014). Phylogenetic microbial forensics was successfully used to show the intentional transmission of HIV from Dr Richard Schmidt to his girlfriend in his 1998 trial. This was the first successful use of microbial forensics in a court case (Koblentz & Tucker, 2010). In these cases, isolates are taken from the accused, the victim, other sexual partners, and the local population so show phylogenetic linkage between the accused and victim in the context of the local epidemiology.  The United States, United Kingdom, Sweden, the Netherlands, Japan, Canada, Germany, Australia, Singapore, and now China are involved in the development of microbial forensics (Koblentz & Tucker, 2010; Yan et al, 2014).


Koblentz, G. D., & Tucker, J. B. (2010). Tracing an Attack: The Promise and Pitfalls of Microbial Forensics. Survival, 52(1), 159–186. doi:10.1080/00396331003612521

Yan Y, Wang H, Li D, Yang X, Wang Z, et al. (2014) Two-Step Source Tracing Strategy of Yersinia pestis and Its Historical Epidemiology in a Specific Region. PLoS ONE 9(1): e85374. doi:10.1371/journal.pone.0085374

Wang, H., Cui, Y., Wang, Z., Wang, X., Guo, Z., Yan, Y., et al. (2010). A Dog-Associated Primary Pneumonic Plague in Qinghai Province, China. Clinical Infectious Diseases, 52(2), 185–190. doi:10.1093/cid/ciq107

Cui, Y., Yu, C., Yan, Y., Li, D., Li, Y., Jombart, T., et al. (2012). Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proceedings of the National Academy of Sciences, 110(2), 577–582. doi:10.1073/pnas.1205750110/-/DCSupplemental/sd01.xls

Trench Fever: An Ancient Zoonosis

Rhesus macuque (Photo by J.M. Garg)
Rhesus macaque (Photo by J.M. Garg, CC)

Trench fever is an ancient disease with a surprisingly short history. Named after its discovery in the trenches of World War I, its case history is only about a century old. Yet, the louse transmitted Bartonella quintana that causes trench fever has been found in human remains as old as 4000 years and is one of the most common infectious organisms found in human ancient DNA (for example). Once thought of as a self-limited moderate ‘five-day’ fever (aka quintana) it is now known that it can also cause endocarditis and a chronic bacteremia. It persists today in most countries anywhere that human body lice are common, often among the homeless.

After the chance discovery of trench fever in captive macaques transported in both directions between the United States and China, a Chinese team investigated the extent of Bartonella quintana in macaques in captive primate centers in China (1). They collected blood from Rhesus macaques at three geographically distant primate centers and cynomologus macaques from one additional primate center. They found Bartonella quintana in macaques from all four centers with enough genetic diversity to suggest multiple sources originating in the wild (1). By Multilocus sequence typing (MLST), a type of genetic fingerprinting, they found more genetic diversity just in the macaques from these centers than from all human isolates analyzed to date around the world. This suggested to the Chinese team that the macaques are the likely original host population of an ancient zoonosis (1). The limited genetic variation in humans suggests that the zoonotic transmission events occurred in the distant past and are not continuing today at a level detected in human populations. Further, the Bartonella quintana sequences fell neatly into three groups that corresponded to the species they were isolated from, suggesting to the Chinese group that B. quintana has co-evolved with species specific exoparasites, mostly lice (1).

Phylogeny of Bartonella quintana. Group 1 is found in humans, group 2 in   and group 3 in  .
Phylogeny of Bartonella quintana. Group 1 is found in humans, group 2 in cytomolgus macaques and group 3 in  rhesus macaques. (Li et al, 2013, Ref. 1)

Although they found B. quintana in a high percentage of macaques in all of these facilities, the conditions at the primate centers could account for the high incidence rate. A related study also found that B. quintana spread very easily within the captive Rhesus macaque centers through the macaque specific louse Pedicinus obtusus (2). They were also able to demonstrate that the macaques developed the chronic bacteremia found in humans suggesting some evolved tolerance (2). Samples from wild macaques will have to be sampled to determine what the natural carrying load of these species are. Rhesus macaques have a range from China to Afghanistan with a large population in India. Other macaque species extend the historic range of possible carriers to the Mediterranean and North Africa.


  1. Li H, Bai JY, Wang LY, Zeng L, Shi YS, Qiu ZL, Ye HH, Zhang XF, Lu QB, Kosoy M, Liu W, & Cao WC (2013). Genetic diversity of Bartonella quintana in macaques suggests zoonotic origin of trench fever. Molecular ecology, 22 (8), 2118-27 PMID: 23517327
  2. Li H, Liu W, Zhang GZ, Sun ZZ, Bai JY, Jiang BG, Zhang YY, Zhao XG, Yang H, Tian G, Li YC, Zeng L, Kosoy M, & Cao WC (2013). Transmission and maintenance cycle of Bartonella quintana among rhesus macaques, China. Emerging infectious diseases, 19 (2), 297-300 PMID: 23347418