Category Archives: Geography

War as a Driver in Tuberculosis Evolution

by Michelle Ziegler

Russia has been all over the news lately. Beyond our recent election, increased Russian activity on the world stage has public health consequences for Europe and farther afield. It has been known for a long time that post-Soviet Russia had and continues to have serious public health problems. One of their particular problems that they have shared with the world is their alarmingly high rate of antibiotic resistant tuberculosis. There is no mystery over the root cause of their antibiotic resistance woes — poor antibiotic stewardship (Garrett, 2000; Bernard et al 2013).

A study by Vegard Eldholm and colleagues that came out this fall sheds light on the origins of particularly virulent tuberculosis strains with high rates of antibiotic resistance that recently entered Europe.  A large outbreak among Afghan refugees and Norwegians in Oslo, Norway, provided a core set of 26 specimens for this study that could be compared with results generated elsewhere in Europe (Eldholm et al, 2010). The Oslo outbreak clearly fits within the Russian clade A group that is concentrated to the east of the Volga River in countries of the former Soviet Union. They name this cluster the Central Asian Clade, noting that it co-localizes with region of origin of migrants carrying the MDR strains of tuberculosis reported in Europe.

Figure 5. Phylogeny of the Afghan Strain Family (ASF). Colored boxes represent the country of origin: Afghanistan is orange; other countries are gray. (Eldholm et al, 2016)

When the Oslo samples are added to the family tree, phylogeny, of recent tuberculosis isolates from elsewhere in Europe a distinctive pattern emerges. The branches on the family tree are short and dense, suggesting that this is recent diversity, that they calculate to have occurred within approximately the last twenty years (Eldholm et al, 2016).

The Central Asian Clade spread into Afghanistan before drug resistance began to develop, probably during the Soviet-Afghan war (1979-1989) producing the Afghan Strain Diversity clade. Slightly later, the Central Asian Clade still in the former Soviet states begins to accumulate antibiotic resistance as the public health infrastructure crumbles in the wake of the dissolution of the USSR. The invasion of Afghanistan by the US and its allies in 2002 toppled the Afghan state, crippling infrastructure and spurring refugee movements within and out of Afghanistan. The lack of modern public health standards in Afghanistan since their war with the introduction of these strains by the Soviets in the 1980s provided fertile ground for the establishment and diversity of tuberculosis in the country. Instability has been pervasive throughout the entire region sending refugees and economic migrants from both Afghanistan and the former Soviet states into Europe.

Movements of the Central Asian Clade (CAC) since c. 1960 and the subsequent Afghan Strain Family (ASF). (Eldholm et al, 2016)

Their dating of the last common ancestor for the Central Asian Clade to c. 1961 is significantly younger than the previous dating of 4,415 years before present for the Russian clade A (CC1) of the Beijing lineage of Mycobacteria tuberculosis. They account for this difference by noting differences in their methods of assessing sequence differences and note that their method is in line with other recent evolutionary rates for other tuberculosis clades.  The diagnosis dates and length of the arms on their reconstructed phylogeny suggests that there were multiple, independent introductions of the cases from Afghanistan and the former Soviet republics. This is consistent with a repeated periods of refugee movements from central Asia into Europe.

The rapid proliferation and diversification of the Afghan Strain Family may be explained by a known syndemic between tuberculosis and war (Ostrach & Singer, 2013). Conditions of war everywhere disrupt food systems, destroy critical infrastructures such as electricity and water systems, interrupts medical supplies, and the human public health infrastructure of the country. Malnutrition and stress are known contributors to immune suppression. Many pathogens flourish simultaneously in these conditions increasing the infectious challenges the population must fend off. Diarrheal diseases are the most acute and demanding of rapid attention, allowing longer-term diseases like tuberculosis to slip through the overburdened healthcare system. Afghanistan has experienced nearly forty years of war, political instability, and repeated infrastructure destruction. Thus, they were primed for both the establishment of new tuberculosis strains during the Afghan-Soviet war in the 1980s along with the proliferation and diversification of tuberculosis during the Afghan-American war of the last sixteen years.

Established syndemics between tuberculosis and war have been made retrospectively following the Vietnam war and the Persian Gulf war of 1991 (Ostrach & Singer, 2013). In Vietnam, prolonged malnutrition caused an eruption of tuberculosis along with malaria, leprosy, typhoid, cholera, plague, and parasitic diseases.  A WHO survey in 1976 found that Vietnam had twice the incidence of tuberculosis over all of its neighboring countries (Ostrach & Singer, 2013). When the military intentionally targets water infrastructure as it did in Vietnam and Iraq, the production of civilian infectious disease is a tactic of war. In both Vietnam and post-Gulf war Iraq, more civilians died of malnutrition and infectious disease than enemy soldiers died of all causes (Ostrach & Singler, 2013).

It seems likely that this is just one of the first studies to establish a link between serious infectious disease developments and the Afghan wars. The current war zones throughout central Asia and the Middle East already have ramifications for the public health of the entire world that walls along borders will not be able to stop. Most of the cases in the Oslo outbreak were Norwegians, not Afghan immigrants. Diseases will spread beyond the migrants so country of origin screening will be of little use before long.


Eldholm, V., Pettersson, J. H. O., Brynildsrud, O. B., Kitchen, A., Rasmussen, E. M., Lillebaek, T., et al. (2016). Armed conflict and population displacement as drivers of the evolution and dispersal of Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 201611283–16.

Ostrach, B., & Singer, M. C. (2013). Syndemics of War: Malnutrition-Infectious Disease Interactions and the Unintended Health Consequences of Intentional War Policies. Annals of Anthropological Practice, 36(2), 257–273.

Bernard, C., Brossier, F., Sougakoff, W., Veziris, N., Frechet-Jachym, M., Metivier, N., et al. (2013). A surge of MDR and XDR tuberculosis in France among patients born in the Former Soviet Union. Euro Surveillance: Bulletin Européen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin, 18(33), 20555.

Landscapes of Disease Themed Issue

Untitled design.jpg

For the last couple years, I have been writing about a landscape-based approach to the study of infectious disease in general and historic epidemics in particular. When I first wrote about Lambin et al.’s now classic paper “Pathogenic landscapes” nearly three years ago, I did not know then that it would be so influential in my thinking or that the Medieval Congress sessions would be so successful. In the fall of 2014, Graham Fairclough and I began talking about ways that this first congress session could be represented in the journal he edits, Landscapes. This issue is a departure from their usual approach to landscape studies so I would like to thank Graham Fairclough for entrusting me with a whole issue. It has been a challenge for both of us, and I am proud of our product.

This issue represents the wide variety of studies that can be done all contributing to an understanding of past landscapes of disease. One of the reasons why I like the phrase landscape of disease, rather than simply landscape epidemiology, is that it opens up the array of disciplines that can be involved. In the study of diseases of the past, humanistic approaches can be as valuable as scientific methods. Both are required to build a reasonably coherent reconstruction of the past. Science and the humanities need to act as a check and balance on each other, hopefully in a supportive and collegial way.

The issue was published online a couple days ago. Accessing the journal through your library will register interest in the journal with both your library and the publisher, and would be appreciated. By now the authors should (or will soon) have their codes for their free e-copies if you do not have access otherwise.

Table of Contents

Landscapes of Disease by Michelle Ziegler. An introduction to the concept of ‘landscapes of disease’ and the articles in the issue. (Open access)

The Diseased Landscape: Medieval and Early Modern Plaguescapes by Lori Jones

The Influence of Regional Landscapes on Early Medieval Health (c. 400-1200 A.D.): Evidence from Irish Human Skeletal Remains by Mara Tesorieri

Malarial Landscapes in Late Antique Rome and the Tiber Valley by Michelle Ziegler

Epizootic Landscapes: Sheep Scab and Regional Environment in England in 1279-1280 by Philip Slavin

Plague, Demographic Upheaval and Civilisational Decline: Ibn Khaldūn and Muḥammed al-Shaqūrī on the Black Death in North Africa and Islamic Spain by Russell Hopley

plus seven book reviews. Enjoy!


Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C., & Soti, V. (2010). Pathogenic landscapes: Interactions between land, people, disease vectors, and their animal hosts. International Journal of Health Geographics, 9(1), 54.

Rivers in European Plague Outbreak Patterns, 1347-1760

by Michelle Ziegler

The era of big data is coming to historic epidemiology. A new study published this month in Scientific Reports took a database of 5559 European outbreak reports (81.9% from UK, France and Germany) between 1347 and 1760 to analyze the role of rivers in the incidence and spread of plague. Their hypothesis was that river trade played a similar role as maritime trade in disseminating the plague but that the correlation would grow weaker over time as movement of goods over land became less expensive. In the 14th century, water transport was approximately ten times cheaper than land transport; the cost ratio diminishes to two to four times as expensive by the 18th century.  While it is not surprising that rivers had a role in disseminating the plague, the high correlation Yue, Lee, and Wu (2016) found between not only the proximity of the river but also its size and elevation is striking. Over 95% of the outbreaks occurred within 10 km of a ‘navigable’ river, defined as 5 m or greater in modern width and to differentiate maritime from riverine trade, excluded outbreak sites within 5 km of the maritime coastline. To ensure that rivers were suitable as trade routes, they only included rivers that linked two cities and excluded rivers that flowed into a lake without an outlet.

“Figure 1. Temporal and spatial distribution of plague outbreak in Europe in AD 1347–1760 (modifed from Büntgen et al 2012).” Yue, Lee, & Wu, 2016.

If we drill down into their results more directly, then we find that 84% of the city centers were less than 1 km from a river with 79.5% of those being on a river at least 20 meters wide. By their calculations, the average river width was 84.6 m. This correlates well with increased traffic and goods following to and through cities on substantial rivers. It is worth nothing here that the specific examples they give in England, Fossdyke, River Great Ouse, and the River Derwent are either canals or fit into an extensive canal system.

Looking at relationships between the outbreak sites and geography also favors high traffic river routes. When they included a “spatial lag in the regression models” they showed that there is a “highly significantly correlation with the spatial lag (p <0.01), indicating that plague outbreaks were spatially dependent upon previous outbreaks in adjacent cities” (Yu, Lee & Wu, p. 2). There was also a negative correlation between elevation and plague incidence, which they attribute to a lack of navigable rivers at higher elevations noting that only 20 incidents were recorded above 1000 m over sea level.  They also tested their results with controls for population density and economic status which did not effect their results for the likelihood of plague incidence or the association between outbreaks and river width. This will have to be evaluated by those with more modeling experience than I have.

There are a few caveats. First, such studies are only as good as their database. Yue, Lee and Wu used the digitized database constructed by Büntgen et al (2012) that was itself based on  a 35 year old archive published in French. I’ll leave its scrutiny to historians. They also do not address potential biases in all such databases, such as the likelihood that urban sites are recorded at a higher frequency than rural sites or that the political climate can effect the survival of records. Indeed, economic records are likely to note pestilence as a factor effecting commerce. While the environmental destruction of an enduring war could increase plague incidence, the high level of records from the ’30 years war’ needs a historians eye to evaluate. They also note that they are using measurements of modern rivers and canals that may have been significantly different in the past, modified by both natural processes such as silting or flooding and man-made changes such as straightening, dredging, or canal development.

They  also assume there were no European reservoirs, which we now know is not true. Ancient DNA studies have indicated that there were at least two strains descended from the Black Death circulating within late medieval Europe (Bos et al, 2016;  Spyrou et al, 2016). The European reservoir(s) have not yet been located. However, relatively few of the incidents reported in the database are likely to be actual zoonotic events linked directly to a local sylvatic (wild) reservoir, plus many known reservoirs outside of Europe are found at high elevation (for example in Tibet or Madagascar) and so are unlikely to be in this particular database given the absence of sites at higher elevations. Once a new outbreak emerges from a high elevation reservoir and comes off the mountain so to speak, then its transmissions by rivers is as likely as a strain entering from outside of Europe. On the other hand, if cities or even river networks are the actual reservoir, it would significantly effect their results.

River and canal networks or large river ports could function as reservoirs. River ports are similar to coastal maritime ports in that they have warfs, warehouses and nearby markets that would support large rodent populations. Barge traffic would specialize in transport of grain and other foodstuffs attractive to rodents.  Yue, Lee and Wu  (2016) state that they did not query their database for the effect of flooding because they could not accurately predict where floods would occur, that flooding is not predictable based solely on river width. Flooding along these river and canal systems is something that needs to be investigated because it would force rodents out of their normal shelter and could be related to human outbreaks (as the plague of 589 in Rome probably was). Floods could also carry infected rodents or fleas downstream on floating debris.

This study is a interesting jumping off point for future work. The database needs to be evaluated by historians and perhaps subdivided into smaller time periods. Division of the database into regional studies would also allow local archaeology and ecology to be more informative on precise outbreaks. I’m looking forward to all of questions big data studies like this one open up!


Yue, R. P. H., Lee, H. F., & Wu, C. Y. H. (2016). Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe. Scientific Reports, 1–8.

Büntgen, U., Ginzler, C., Esperf, J., Tegel, W., & McMichael, A. J. (2012). Digitizing historical plague. Clinical Infectious Diseases, 55(11), 1586–1588.

Bos, K. I., Herbig, A., Sahl, J., Waglechner, N., Fourment, M., Forrest, S. A., et al. (2016). Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. eLife, 5, 17837.

Spyrou, M. A., Tukhbatova, R. I., Feldman, M., Drath, J., Kacki, S., de Heredia, J. B., et al. (2016). Historical Y. pestis Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics. Cell Host and Microbe, 19(6), 874–881.