Category Archives: archaeology

A Migration Age Anglo-Saxon Leper

Paleomicrobiology and isotopic analysis has the ability to completely change what we know of past infectious diseases. A study published this month on a fifth century Anglo-Saxon skeleton is one of the most complete I have read.

Lesions on skeletons found at Great Chesterfield in Essex, England, suggested possible leprosy. To confirm this diagnosis, they chose one skeleton that is nearly complete and in good shape for further analysis.

Grave GC86 from Great Chesterford, excavated in a rescue archaeology operation in 1953-4.
Grave GC86 from Great Chesterford, excavated in a rescue archaeology operation in 1953-4. (Inskip et al, 2015)

The skeleton (GC96) shown to the right is of a 25 to 35-year-old male buried in modestly furnished grave in an area of the cemetery with other visibly disabled people. Radiocarbon dating places these remains at AD 415-545, and thus Migration Age for the Anglo-Saxons. The Great Chesterford cemetery is located roughly in an approximate border area between the kingdom of the East Saxons and East Angles at the site of a ford of the River Cam (or Granta) downriver from Cambridge. He was buried with a slender knife secured by a belt with an oval buckle. Over his left shoulder, a spear and a conical ferrule were found.  Lesions consistent with lepromatous leprosy were found on the lower legs with extensive remodeling of the right foot. A bronze shoelace tag found near the right foot suggests the diseased foot covered with a shoe.  Given the lesions found on the foot and lower legs, the ferrule may have capped a walking staff. His facial bones were missing losing a common, distinctive site of leprosy lesions. The disorganized and rough appearance of new bone growth suggest that the lesion was active at the time of death.

Profile of the mycolic acids extracted from the indicated bones.
Profile of the mycolic acids extracted from the indicated bones. (Inskip et al, 2015)

Selections of bone were taken and powdered to extract aDNA and for lipid analysis. Mycobacterium species that cause leprosy and tuberculosis have distinctive lipid profiles that have been successfully extracted and identified by archaeological remains in the past. Their analysis of lipids from the bones confirmed the presence of Mycobacterium leprae and excluded the presence of Mycobacterium tuberculosis.  The aDNA analysis confirmed identified the presence of Mycobacterium leprae strain 3I-1, that has been previously found in later medieval England, Denmark and Sweden. Inskip et al (2015) suggest a possible Scandinavian origin for the strain.  The VNTR analysis used to produce ‘genetic fingerprints’ shows that this strain of M. leprae is unique among other ancient isolates and should be useful in the comparative analysis of other early remains. Other remains in the same cemetery have similar lesions and will be investigated in the future.

Isotopic analysis of his tooth enamel provide an indication of childhood location and adult nutrition. Carbon analysis showed a diet of primarily C3 plants, consistent with southern Britain. Analysis of oxygen and strontium isotopes suggest he did not spend his childhood in the area of Great Chesterford.

The combination of the two isotopes gives his best probable origin to be between north-central France and the north-central Germany, in other words, the region of the Anglo-Saxon homeland. A continental origin coupled with the dating range between 415 and 545 suggests that he was part of the migration of the peoples who later called themselves Anglo-Saxons. He was likely no more Scandinavian than any of the other migration era ‘English’. This is further supported by a relatively high level of leprosy (by osteological analysis) in medieval city of Schleswig, the very area where the Angles are most specifically located. Further analysis of migration era remains should refine the origins of this strain of leprosy and determine its frequency.


Inskip, S. A., Taylor, G. M., Zakrzewski, S. R., Mays, S. A., Pike, A. W. G., Llewellyn, G., et al. (2015). Osteological, Biomolecular and Geochemical Examination of an Early Anglo-Saxon Case of Lepromatous Leprosy. PLoS ONE, 10(5), e0124282. doi:10.1371/journal.pone.0124282.s001

Kristina Killgrove, 14 May 2015 “Earliest Case of Leprosy in Britain reveals Scandinavian Origins of the Disease”,

SIMON MAYS, SONIA R. ZAKRZEWSKI, SARAH A. INSKIP, STEPHANIE WRIGHT and JOANNA R. SOFAER. (2015) Anglo-Saxon concepts of dis/ability: placing disease at Great Chesterford in its wider context. Poster at The 84th Annual Meeting of the American Association of Physical Anthropologists.

Contours of the Black Death Cemetery at Charterhouse Square, London

Excavations for the Crossrail Extension project discovered the second major Black Death cemetery in London in 2013. This week the first peer-reviewed publication of findings from the site appeared (in press).  As a rescue excavation in the midst of a construction project, the site had to be quickly surveyed for the extent of the cemetery and this is what is contained in this publication.

This site is part of 13 acres leased by Sir Walter de Mauny from St Bartholomew’s Priory for an emergency cemetery for plague victims in 1349 AD.  The site has been used for a variety of purposes over the centuries and currently is a four acre green space called Charterhouse square. The site is graphically displayed below with the locations of later structures.

Crossrails site, London
Crossrails site in Charterhouse Square, London (Dick et al., 2015)

The initial discovery came in a shaft just to the southwest of the Charterhouse Square. There they found three layers of graves with a total of 25 bodies lacking signs of trauma and with pottery shards from 1270-1350 AD. Subsequent radiocarbon dating and aDNA analysis confirmed that they were victims of the Black Death.

The surveys conducted over just two days were able to outline the broad contours of features at the site. These included a 15th century building, a priory kitchen, a probable World War II submerged emergency water tank, and a possible ditch and bank along the cemetery that is mentioned in descriptions. They believe that a disturbed area in the southwest corner represents about 200 individual graves, although only excavation can confirm these graves. They concluded that their ability to detect medieval objects in such an intensely used urban area suggests these methods are a good option for similar future situations.

The scans also revealed some surprises. There are not as many graves as descriptions suggest should have been there, though bodies may be more dense that suggested by the scans. They also did not find any large pits of  stacked bodies. This indicates that even during the height of the Black Death, many people were still buried in individual graves. Graves were found in three phases with layers of clay-rich earth in between perhaps in an attempt to seal the graves. These scans should allow them to target future excavations to areas with a high probability of dense graves.


Dick, H. C., Pringle, J. K., Sloane, B., Carver, J., Haffenden, A., Stephen Porter, H. A., et al. (2015). Detection and characterisation of Black Death burials by multi-proxy geophysical methods. Journal of Archaeological Science, 1–50. doi:10.1016/j.jas.2015.04.010 [In press, accepted manuscript]

Molecular Confirmation of Yersinia pestis in 6th century Bavaria

Erasing any lingering doubts about the agent of the Plague of Justinian, a group of German biological anthropologists have shown conclusively that Yersinia pestis caused an epidemic in a 6th century Bavarian cemetery at Aschheim. Harbeck et al (2013) provide a convincing refutation of previous theories about the etiologic agent of the Plague of Justinian.   Returning to the same cemetery where plague was previously reported, two independent labs using the most modern standards to prevent contamination confirmed Yersinia pestis from multiple burials within the cemetery making this the best characterized Early Medieval plague cemetery.

The cemetery, called Aschheim, is in Bavaria outside of Munich. It contains the remains of 438 people with an unusually high number of multiple graves but no disordered mass graves. The 19 multiple burials contained two to five individuals arranged in lines. The cemetery was dated archaeologically to 500-700 AD with remains being carbon dated ranging from 530 to 680, all consistent with the 541 pandemic and its aftermath. Harbeck et al (2013) tested 19 individuals from 12 multiple graves. From these, there were eight positive samples, but only one produced enough aDNA to do some SNP genotyping. Added to the previous paper, this makes 11 positive individuals from this cemetery. Given the tenuous survival of aDNA, 11 positive individuals out of 21 tested in the two combined papers is a very good success rate. This is a cemetery that the F1 antigen test would be interesting since it could be used on the entire cemetery without great cost or labor. More sensitive than aDNA, the antigen test could tell us the percentage of plague deaths in the cemetery.

Individual A120 was screened with several SNPs that mapped it to an early region of the phylogenetic tree in the 0.ANT section. This makes the Plague of Justinian isolate ancestral to the Black Death isolates (yellow boxes below) from East Smithfield. This section whose only point of diversity is 0.ANT1 at node 4. Date predictions for the nodes of diversity in the tree fits with the Plague of Justinian falling in this region.  Modern isolates that  form this region of the phylogenetic tree all come from central Asia (around Tibet), suggesting that like the Black Death, the Plague of Justinian also originated in Asia. Overall, everything fits in well with expectations for the first pandemic.

(Harbeck et al, 2013. Fig. 1)
(Harbeck et al, 2013. Fig. 1)


Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, et al. (2013) Yersinia pestis DNA from Skeletal Remains from the 6th Century AD Reveals Insights into Justinianic Plague. PLoS Pathog 9(5): e1003349. doi:10.1371/journal.ppat.1003349

Wiechmann I, & Grupe G (2005). Detection of Yersinia pestis DNA in two early medieval skeletal finds from Aschheim (Upper Bavaria, 6th century A.D.). American journal of physical anthropology, 126 (1), 48-55 PMID: 15386257