Category Archives: molecular biology

The Paleomicrobiology of Malaria Detection

Malaria is arguably one of the most influential infectious diseases in human history. Its been with us as long as we have been human, but as Teddi Setzer shows us in her recent review of detection methods, our abilities to find it in the past leaves a lot to be desired.

The standard method of looking for malaria involves searching for signs of anemia on the skeleton on the hypothesis that the anemia caused by malaria leaves these marks. This is not as clear as it might seem. There have been very few skeletal studies of modern people who have been diagnosed with malaria. There is no medical need; there are much more reliable methods of diagnosing malaria in a living person (or recent cadaver). So, it is unclear how often these lesions form in malaria patients. Other causes of anemia and even scurvy can cause the same or very similar lesions as well.  The number of malarial infections and/or relapses also effect bone changes. Plasmodium falciparium produces a short, virulent disease that may kill before bone changes develop. On the other extreme, a single P. malariae infection can relapse for life, although the anemia is not as severe.  Osteology must be correlated with other information to support the diagnosis. 

Cribra Orbitalia from Jess Beck’s blog Bone Broke

Cribra orbitalia and porotic hyperostosis are the two main indicators sought. Both are caused by bone marrow expansion in an attempt to compensate for the loss of red blood cells. Cribra orbitalia is pitting and extra bone growth in the orbits of the eyes, as seen in the photo.  Porotic hyperostosis causes pitting and thinning of the compact bone ‘shell’ that covers the cranial bones. A  correlation of nutritionally informed osteology with later epidemiology and mosquito incidence in England reviewed in a previous post shows that a convincing case can be made for malaria in ancient remains.

Detection of human genetic traits selected for by malaria such as the Duffy blood group, sickle cell trait, thalassemias, and glucose-6-phosphatase deficiency (G6PD) can with supporting information suggests that the population was once under selection by malaria. Balanced polymorphisms like sickle cell trait can remain in a population for centuries after the selection is gone (by either ecological change or by migration away from the malarious region). While there are some skeletal indicators of some hemoglobinopathies, human ancient DNA analysis would be a more secure method of diagnosis. Care has to be taken to distinguish skeletal changes made by malaria’s hemolytic anemia and the hemoglobinopathy anemias.

Ancient DNA detection of the malaria Plasmodium parasite has been disappointing. To date, only the tropical Plasmodium falciparium, that causes the most severe disease, has been detected by PCR. It is believed that attempts of detect the historically more common Plasmodium vivax have been stymied by the low parasite load in the blood.  The difficulty in finding vivax aDNA is a reminder that pathogens really do need to be in high concentrations within the sample to overcome degradation and be detected by PCR or sequencing technology. As far as I know, there have not been attempts to detect the other three human malarial parasites– Plasmodium ovale, Plasmodium malariae and Plasmodium knowlesi — by aDNA analysis.

Hemozoin crystals in the liver (Source: KMU Pathology Lab)

Modern medicine is devising an ever expanding array of tests for malaria diagnostics and prognostics. However, most of these tests all require fresh (soft) tissue or blood. Immunological methods have not been applied to malaria in archaeological material yet. The most promising detection method for malaria among the newer diagnostics is the detection of the iron containing waste product of the Plasmodium parasite hemozoin. When the parasite feeds on hemoglobin in the red blood cell, toxic iron waste products are processed into the biocrystal hemozoin and excreted into the tissues. In patients with reoccurring or multiple malaria infections, hemozoin will stain their bone marrow black and can be found in liver, spleen, brain and lungs. It can be detected microscopically (as seen above) or by mass spectrometer. Although some other blood parasites also excrete hemozoin, they can be distinguished from the malarial product. 

Despite the advances in diagnosis for existing malaria patients taking advantage of new methods and technologies, archaeological detection has not enjoyed the same success. Building a case for malaria in the past, must rely on an array of data with knowledge of ecology, vectors, and nutritional status of the population in addition to osteological markers of anemia. Hopefully, the detection of hemozoin will eventually be the key to opening up biological studies of malaria in the past. If hemozoin can identify malaria victims, then perhaps focusing the ancient DNA work on hemozoin positive remains will be more successful breaking through the firewall to malaria’s evolution and historical epidemiology. 

 Source:

Setzer, T. J. (2014). Malaria detection in the field of paleopathology: A meta-analysis of the state of the art. Acta Tropica, 140, 97–104. doi:10.1016/j.actatropica.2014.08.010 (open access early editionfinal edition)

See also Jess Brek “Porotic Hyperostosis and Cribra OrbitaliaBone Broke, March 2014. 

Microbial Forensics of a Natural Pneumonic Plague Outbreak

For bioterrorism agents like Yersinia pestis it is necessary to identify the strain and its source specifically enough for forensic use. Categorizing an epidemic isolate and tracing its source is always important for public health measures, but the level of precision is far higher for legal uses. Developing forensic techniques to characterize and parse very similar strains of a species and trace it to a specific location robs terrorists (and states) of the ability to deny responsibility for an attack (Koblentz & Tucker, 2010). The ability to launch a secret and deniable attack on an enemy has been viewed as one of attractive advantages of biological warfare.

A Chinese group led by Ruifu Yang and Yujun Cui recognized that only whole genome sequencing could adequately parse the strains of the monomorphic species Yersinia pestis but that the computing power necessary to compare entire genomic sequences as the database enlarges is impractical (Yan et al, 2014). Unlike most pathogens, typing only specific regions of the genome are just not enough to get a unique genetic fingerprint for low genetic variability pathogens like Yersinia pestis. This is yet another indication of the genomic similarity of all Yersinia pestis strains.

The Chinese group developed a two stage method of classification detailed enough for forensic work.  They took a twelve person outbreak of pneumonic plague contracted from a dog in 2009 in the Qinghai area of Tibet / western China, specifically at Xinghai as their test case (Wang et al, 2010). In the first step they took six cases including the two dogs who died in the outbreak and compared them to 24 strains representing the 23 phylogroups of the phylogenetic tree. This comparison selected which branch of the phylogenetic tree the outbreak belonged. There were no SNP (single nucleotide polymorphisms) different between the seven isolates confirming a common source, one of the dogs based on outbreak narratives. The seven isolates were all the same strain belonging to branch 1.IN2 of the tree. The second step was to then compare the isolates to all known strains of 1.IN2 shown below. Since these strains all come from the Qinghai-Tibetan plateau, they were able to add other strains historically isolated from this region.

Distribution of 1.IN in Qinghai  (site source)
Distribution of 1.IN2 in Qinghai (Yan et al, 2014, click to enlarge)

The results localized the new isolates (r) as being from the same focus as strains g, r, s, t. u plus, interestingly, the 0.PE7 strain (green b) that is over 300 SNPs different from the 1.IN2 strains. All of these other strains from this branch are scattered around the Qinghai region near Lake Qinghai. The polysomy (branch point) that produced all of the 1.IN2 in Xinghai (g,r,s,t,u) is located closer to the eastern end of Lake Qinghai, where the Chinese team hypothesizes this these strains began. The new outbreak isolates did not match any previous isolates from Xinghai which is testimony to the degree of movement of these strains around the region. Without the case narrative, they would not have been able to identify the specific foci at Xinghai, but would have got it to the region of east Qinghai lake. This illustrates how important sampling all of these foci are because a biological attack is likely to be far from its site of environmental isolation. Characterization of all laboratory strains, obviously, needs to happen as well for forensic tracing.

Reconstructing the historical epidemiology of this region will be an area of continuing research. The location of 0.PE7, the most genetically ancestral strain ever found — the closest the common ancestor of all Yersinia pestis, plus the likelihood that the ‘big bang’ epidemic (or epizootic), that produced the third pandemic, represented by node 12, was also in this region. (Each of the nodes represents a bang of evolutionary diversity, with all major branch points in the lineage probably representing large epidemics or epizootics.) The full diversity of strains in this region (unrelated to the outbreak isolates) are not shown in the figure above. This same group lead by Ruifu Yang  produced the primary phylogenetic tree of Yersinia pestis in China that noted that the molecular clock is not constant (Cui et al, 2012), here calculates that N12 is about 212 years old (95% confidence being 116 to 336 years ago) (Yan et al, 2014).  They note that in the history of Qinghai, there was a major human outbreak in the year 1754 CE linked to a Buddhist missionary working in Qinghai and Gansu provinces (Yan et al, 2014). Its is unclear if we can trust this narrative at all; scapegoats are common in plague narratives. Linking the 1.IN2 strains from Qinghai to four of the five o.IN2 isolates from Tibet suggest that the epidemic moved from Qinghai to Tibet in one ancient epidemic, though remaining isolate from Tibet looks like a more recent transmission from Qinghai. Regardless of the movements of 1.IN2, this area is believed to have been a site of long-term survival of Yersinia pestis, potentially over a thousand years, so that it has a lot to teach us about enduring foci.

Microbial forensics has already been used in criminal investigations, court cases and intelligence operations, such as the ‘Amerithrax’ (anthrax) attacks of 2001, anthrax spores sprayed over Japan by a cult, and suspicious plague cases in New York City (Yan et al, 2014). Phylogenetic microbial forensics was successfully used to show the intentional transmission of HIV from Dr Richard Schmidt to his girlfriend in his 1998 trial. This was the first successful use of microbial forensics in a court case (Koblentz & Tucker, 2010). In these cases, isolates are taken from the accused, the victim, other sexual partners, and the local population so show phylogenetic linkage between the accused and victim in the context of the local epidemiology.  The United States, United Kingdom, Sweden, the Netherlands, Japan, Canada, Germany, Australia, Singapore, and now China are involved in the development of microbial forensics (Koblentz & Tucker, 2010; Yan et al, 2014).

Reference

Koblentz, G. D., & Tucker, J. B. (2010). Tracing an Attack: The Promise and Pitfalls of Microbial Forensics. Survival, 52(1), 159–186. doi:10.1080/00396331003612521

Yan Y, Wang H, Li D, Yang X, Wang Z, et al. (2014) Two-Step Source Tracing Strategy of Yersinia pestis and Its Historical Epidemiology in a Specific Region. PLoS ONE 9(1): e85374. doi:10.1371/journal.pone.0085374

Wang, H., Cui, Y., Wang, Z., Wang, X., Guo, Z., Yan, Y., et al. (2010). A Dog-Associated Primary Pneumonic Plague in Qinghai Province, China. Clinical Infectious Diseases, 52(2), 185–190. doi:10.1093/cid/ciq107

Cui, Y., Yu, C., Yan, Y., Li, D., Li, Y., Jombart, T., et al. (2012). Historical variations in mutation rate in an epidemic pathogen, Yersinia pestis. Proceedings of the National Academy of Sciences, 110(2), 577–582. doi:10.1073/pnas.1205750110/-/DCSupplemental/sd01.xls

Historians Chronicling Plague Genetic Discoveries

After my last post critiquing Cohn’s scientific interpretations, I think its only fair to write about all the historians who are actively engaging and incorporating scientific findings in their work. I’ve communicated with a lot of historians who are following the scientific work on the plague and I know there will be some articles and books coming out over the next year or so that incorporate some of new genetics in historical analysis.

So for science folks, these two articles give us some insight into how historians see plague genetics unfolding. Little concentrates on the early drama over plague genetics. Bolton covers that material also, but also looks at newer information on transmission dynamics too.

Little, L. K. (2011). Plague Historians in Lab Coats. Past & Present, 213(1), 267–290. doi:10.1093/pastj/gtr014

Bolton, J.L. ‘Looking for Yersinia pestis: scientists, historians and the Black Death’ in L. Clark and C. Rawcliffe (eds.), Society in an Age of Plague, The Fifteenth Century XII (Woodbridge: Boydell, 2013), publication date 15 August 2013, ISBN 9781843838753. (In the same book/issue as Cohn’s paper discussed in the last post.)

Overall, I am really optimistic about the interdisciplinary work that can be done on the plague.